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1531 papers on the quantum theory of valence, Slater
and Pauling discussed the conditions governing the strengths of elec-
tron-pair bonds according to the Heitler-London theory. They pointed
out that the strength of the bond formed between two atoms by an elec-
tron on each should tend tec be larger the more the regions of space
occupied by the two eleotrons overlap. These regions of space are de-
fined by the one-electron wave functicns, or orbitals, occupled by ths

electrons, The criterion for maximum strength is then that of maximum

overlapping of these orbitals.

The best way to gauge the total amount of overlap of two orbi.
tals as an index of bond strength is probably to write down a mathemati-
cal expressicn for each, to form the product of these, and then to take

the integral of this product over all space (overlap intagral).2 (of

course, only the region of space between and close to the two atoms will
contribute appreciably.) That is, 1f'l. represents the expression for

the orbital on one atom, and:Lb for that on the other, the overlap inte-

grel, which is commonly symboligzed by 3, is given by

s =anlb av, (1)

all space

It may be helpful befcre proceeding further to try to see a
little more clearly why and how it is that just the quantity S enters
into the determination of the bond energy. For this purpose, a
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consideration of the simplsa case of the one-eiedtron bond in Hz" is oon-

venient, using the MO (molecular orbital) theory of valenoce. This the-

S ad 6 i he

more familiar VB (valence-bond, or Heitler-London-Slater-Pauling; the-
ory, but gives similar (though not identical) results as regards the
dependence of bond strengths on overlap integrals, The MO theory has
the advantage of being applicable tc ons-electron and three-electron
bonds as well as to electron-pair bends, and of being able to deal more
simply than the VB theory W th heteropolar bonds, conjugated and aro-

matio moleculses, and so on; in the ¥0 theory, no special concept of re-

' sonance among iwo or mor-e bond structures is needed in these situations,

C

" that is, the probability is 1 of finding the electron somewhere. The

In Ha+, the one electron occuples a tonding molecular orbital,
say @, which may be approximately constructed ty forming a symmetrical
linear combinetion of ordinary normalized ls atomic orbitals, say lg‘l

and 1s,, of the two atoms a ard b, That is,

g c(lsa + lab) ,

2
3 (2)

where o = 1/(2 + 23)

is a normalizing factor; S here is the overlap integral in whichxa and
’X,b of Eq. (1) are lga and lgb respectively. The factor ¢ is so chosen
that ¢2.d_v shall represent the probadbility of finding the electron in any
given small volume dv of space, # of ocourse being a funotion of posi-
tion in space, determined by the forms of the simple familier mathemati-

cal expressions for l_s_. and lgb. Hence,

gdzdvzlx |

TN

function ¢2 is then a probability density function; when multiplied by

ol b, ¢

the charge -e of an electron, it becomes a charge density funoction for
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the electron. Using (2), one sées thaé
# iugf + 1%2)/(1 +8) + (18 18 }/(1 +8) . (3)

Tails divides the total probability or charge densiiy funotion into thrae
parts, the total magnitude of each of which can be obtained by integrat-
ing, as follows:

(]

= (£)/(1 +8) + #/(1 +8) +8/(1 +8),

sluce glgazg! = glgbzg!.n 1, and glgnlgbg! = S, It is seen that on tho
average the fraction S/(1 + S) of the electronic charge is in the over-
lap region, the remaining fraction 1/(1 + S) being centered one half
a*ound each of the two nuclei a and b. Or, in other words, the electron
spends the fraction S/(1 + S) of its time in the overlap region, and
#/(1 + 8S) of 1ts time in a 1s orbit on &, and the same on b.

For the ocase of an eleotron spending a full half of its time
in a 18 orbit on nucleus & in the field of nucleus b, and the other
- half in a 18 orbit on b in the field of a, the energy would be the same
as if it spent all its time in a 1ls orbit on one nucleus dbut in the Cou-
lomb field of the other; in other words, it would be simply the energy
of en H atom in the field of an H' ion. This energy would differ only
moderateiy from that of an H atom alone in the absenoce of an B* ion.
But quantum mechanics says that actually in 82* the fraction §/(1 +8)
of the total electron density has been shifted away from both a and b

into the overlap region between them; and shows, furthermore, that it is

_ precisely this vartiasl shift of electronic charge into the increased

field in the overlap region which is primarily responsible for the sta~
bility of Ha*. Hence, it 1s to be expected that the bond energy of 82*
should be approximately proportional to 3/(1 + S).

VB av » [1/(2 + 28)]gls.adv + [1/(2 + BSﬂglabzdv + [17a +8) Sla‘labdv |

S
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Since «ocording tc MO thebry thé same sort of considerations
hold for covalent bonding in general as for B,f, it is plausible to sup
&
' pose that bond energies (more acocurately, sner-'cs of atomisation) may

ir peneral be represented by expressions of ths Jerm

D=2 A!.Iisi/(l +8,), (4)
the sum zi being taken over all the bonding slectrons.
In EQ. (4), each 5111 is meant to be a proportionality con-

stant. The reason for writing these in the form AI, rather than just
A, will be explained in & moment. Since the theory behind Eq. (4) 1s
. ‘: only rough, it makes sense to treat Al as an empirical quantity, rather
than to try to detemine it theoretically. By so doing, one can expect
to compensate to a considerable extent for the approximateneass of the
theory.,
However, it 1s desirable first to take note that on the basis
of very simple and general theoretical considerations one expects, for
& glven value of S, larger bond energies for combinations of atoms
whose electrons are strongly held (e.g., H atoms) than for those whose
(," electrons are loosely held (e.g., L1 atams), This 1s because in the
former case, Wi th smaller atomic orbitals, the electrons are concen-
trated in stronger flelds of force, closer to the nuclei, so that larger
energy effects are involved. 3ince the energy of bonding mey be con-
sidered as a modification or perturbation of the original energy of the

valence electrons, it i1s to be exnected that it should be more or less

proportional to the latter. Now the lonigzation energy I of a valenoce

electron in an atom is a good measure of its energy in the atom ("bind-
(" ing energy"). It is thorefore plausible to write the proportionality
factor preceding each S/(1 + 8) in Eq., (4) 4in the form AI, with I to be

obtained from spectroscopic or electron impact data on atoms, This
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leaves A to be determined as an empirical quantity whioh, it may reason-

ably be hoped, ocan be treated as .a constant, at least for orbitals cf
‘any cne type. In an as yet samewiat preliminary atudy,‘ this hope has

been realized to an ercouraging degree with the use of just two values

of A, one for ¢ bonds and one for x dbonds, [Aotually, the procedure

bo Gibdie-

used was rather more oomplicated than that just outlined, but the basio

1dea and plan was the same: see further discusaion bolov.]

II. DEGREES OF OVERLAP FOR VARIOUS TYPES OF VALENCE ORBITALS
The way in which the overlap integral S for a given pair of
. orvitals varies with the nature of these orbitals, and with the dis-
i’ tance between the atoms with which they are associated, can be seen
guaiitatively by a study of Fig. 1. (Quantitative results are graphed
in Pig. 2.) Fig. 1 depicts, rather schematically, the three pure types
of valence orbitals (2s, 226‘,' and 2px), and one representative hybrid
type (2te, the tetrahedral hybrid of 2s and 2p¢), for the case of two

like first-row atoms, say two carbon atoms, For each type of orbitai,

the figure shows the pair of atoms (a and b), in every case at the same
(; distance R apart, with an orbital of the given type shown attached to
ﬂboth 8 and b, Each orbital oonsists of a region where it is positive
(+ signs) and one where it is negative (- signs). (The meaning would

not be changed if all signs in the figure were reversed, simultaneously;

;
|

it 1is only the relative signs which matter.) The heavy circles or
curves outlining the orbitals in the figure inclose the major parts of
the regions where the orbitals are of any oonsiderable magnitude.
Btraight lines like porcupine quills have, however, been drawn extending
radially out beyond these bounding ocurves in order to suggest that the
> orbitals actually fade away gradually toward zero. The various orbitals
have the forms (for either a or d)
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xaa = Faa(‘"
Xep = 2p(r)\raooa )

(5)
'Xem » Fap(r)fsooa o

- 2“12
Apyorta = Pog * - ¢ hpp

with @ = § for the tetrahedral hybrid shown; o, (or @) 1s the angle

i e R TR —EETTT T B

between any radius vector (or p,) and the line drawn from the center

of a toward that of b (or from that of b toward that of a); Oa' is a

simlilar angle between XKy and any line drawn from the center of a perpen-

Giscular to the line a—b, For present purposes, every orbital should

be normalized so that (92 dv = 1, and 1t will be assumed that F,, or

' )
. Epp in Eqs. (5) contains a factor which has been adjusted so that this
is true,

Referring now to Fig, 1, let it be imagined that R is pro-

grossively deoreased, in each sketch, It is seen that appreciable over-
lapping of corresponding a and b orbitals occurs soonest for X'ate’ next
(} for 'szd‘; then, at considerably smaller R, for%za, and finally for xapx'
It is also seen that if R were finally decreased to zero, %288 and xZab
would ooincide identically, likewise Zana and "Y’ZP"b’ while %apoa and

Xep% would also ocoincide but with reversed sign, From the foregoing

discussion, it i1s now scssible to make a rather good estimate of the be-

g havior of the overlap integral 8 = S'Xa'xb dv as a funotion of R in each
case, At large R, 8 1is zero. For 'Xepo it begins to rise at fairly
large R, but before long reaches a maximum, falls at smaller R, becomes

.I . negative, and goes to -1 at R = O, For both 7'23 and 'X-prn’ it begins to

rise strongly only at rather small R, but keeps on rising steadily to

the value +1 at R = 0. For tho’ overlap begins at even larger R than

for szo.; like the latter also, 8 rises to a maximum and then decreases;
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but the maximum is very much higher for Xeto' and at smaller R.
These results obtained from Fig. 1 by inspection can be :ade

.moro precise if mathematiocal expressions for 223(5) and E'zp(!) are in-

troduced into Eq, (6). S 1s actually evaluated by integration in each
case for any value of R, and the results are then plotted as a funotion
of Re Graphs of this kind are shown in Fig, 2 for all the orbital typss
of Pig, 1, and for the additional hybrid types 'xetr and Xeaa (¢ = (11,3)3
and (i)i respectively in Eqs. (56)). It will be seen that the behavior
of S in each case agrees with what had already been concluded using Fig.
i,

‘ The computations on which Fig, 2 was based were made using
sonewhat roughly approximate expressions, of the well-known Slater type,
£Ar the varlous orbitals.® These involve putting

-Zr/2a
F% = Fap = Cre 0 (6)

i
|
!
1

in Eqs. (5), where C is a constant depending on Z. Z 1s an effective
nuclear charge smaller than the Actual nuclear charge but increasing .
#ih the latter, and a, is the radius of the ls Bohr orbit for the hy- '
‘; d:0gen atom (0.5292). Extensive numerical tables of Slater-A0 overlap
integrals are now available for a wide variety of pairs of orbitals and
a wide range of R values.® z
While Slater orbitals are convenlent for the caloulation of S i
values because of their relative simplicity, orbitals of the much more

acourate SCF (self-consistent-field) type should be used wherever pos-

sible, Following 1s a brief extract from more extensive 1:abloa6 to 11~

e L ¥ e s

lustrate how the SCF differ from the Slater S values for the case of
B the overlap of two carbon orbitals.

wiand
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TABLE 1
COMPARISON OF SLATER- AND SCF-ORBITAL OVERLAP INTEGRALS
FOR CARBON=-CARBON BONDS

) S GmiE t
R s s s s
Zoc Z2s Spo Z2te |
Slater 1
and SCF Slater SCF |[Slater SCF |Slater SCF !
| 1.208 0.61 0,20 0.14 | 0,76 0,68 | 0,34 0.43
]
1.358 L 0.43 0,33 0,19 | 0,72 0.68 | 0.27 0.36
1.548 0.24 0.35 0.24 | 0.66 0.64 | 0,19 0.29
1.798 0.24 0.29 o.28" 0.62 0.55 | 0.12 0.21
B 2,288 0.11 0.17 0.22 | 0,23 0.39 | 0.06 0,12

,
¥ The maximum value is 0.26 at 1.843%.

III. OVERLAP AND BONDING POWER FOR VARIOUS TYPES OF ORBITAILS
Referring to Fig. 2, taken in connection with Eq. (4), some

interesting conclusions can be reached. In agreement with familiar con-

siderations of Pauling, Slater, and others, much greater strength is
predicted for s,p(6) hybrid bonds than for either pure 8 or pure po
bonds; however, contrary to Pauling,2 the overlap integrsl criterion
indicates that trigonal and digonal should be somewhat stronger (in-
stead of weaker) than tetrahedral hybrid bonds. Fig. 2 further indi-
cates that pé and hybrid bonds should be long-range bonds, in agreement
with Pauling and Slater, but that 8 and px bonds should be atrong only
at short range, Fig. 2 (especially if one visualizes how it would look
when revised to the improved basis of SCF orbitals--cf. Table I) indi-

cates, contrary to Pauling,” that pure 2pc bonds should at best be rela-

tively weak, but that 28 and 2px bonds should be strong at sufficiently
close approach of two atoms.

The foregoing results give a very satisfactory explaeanation of

Kb 2 ic dae

!

} e
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some of the major charscteristils &f 8inglé, doudble, and triple bonds.
If two atoms come together to form a single bond, they choose a & bond,
.becauao of its long-mngo character: either a 2p% bond {_o_.a., P=F,

No—o0\ in H,0,, or N n in NQH ; these are all notably weak), or if

possible a 2tec bond (0.5., —0-—0\ in C HG; this is fd rly strong in l
accord with 1ts hybrid oharacter). If two atoms should approach each !
other to form a doudble or triple bond, thsy would be expected first to
form a 6 bond, This would pull them closely enough together so that a
x bond or dbonds could begin to take hold, giving a moderately strong
double bond (e8.g., O=0, \N—)\, or :c-(), or a strong triple bond
i: (e:8+» N=N or —C=C-). The great strength of the triple bond in N,
mu3t be attributed to the fact that, although the N—=E & dbond alone (as

_-“..n.u.-.' Bt LS i mak )

s

in N H ) 1s very weak, and slthough a single x bond alone does not oo-

cur, the cooperative action of one ¢ and two m bonds pulls the atoms

closely enough together so that S becomes fairly large for the m bonds,
whioh then become strong.
To make the foregoing discussion more concrete, SCF-orbital

S values for some representative examples of single and multiple bonds

‘;' at their normal bond lengths are given in Table II."
TABIE II
_._ SCF=ORBITAL S VALUES FOR SOME REPRESENTATIVE BONDS 1
Bond r(R) | Types of Bond and § Values J
C B—H | 0.74 18 (S = 0,75) o o
Li—L1 | 2.67 2s (S = 0.59)
ComC 1.64 | 2te (3 = 0.64)
C C==C 1.36 2r (3 = 0.68) and 2px_ (S = 0.36)
=T 1.20 241 (S = 0.73) and 2px ($ = 0.43)
FF 1.44 2po (8 = 0.22)
It SN Wi PLeg—lsy (8 =0.7)
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The logiocal next step would be to implement Eq., (4) by deter-

mining the empirical comstant A for various types of bonds, This can

" be done, using available data on heats of formation and disso;iation,
and it 1s found that A is about 0.7 for s=-s bonds (the value is 0.77
for Hz), about 0.95 for other & bonds (including C~E and C=——C ¢ bonds)
and about 1.3 for % bonds. These values (which may be called 5?, éc’
end éx respectively) are subjeot to existing uncertainties sboui Leats
of atomization,4 particularly .or carbon ocompourds, but it is at sny
rgte clear that Ax is considerably larger than A, This means thet “he
etrangths of X bonds are relatively considerably larger than one would

!‘ cor.slude from the S values alone, On the other hand, the strengths of
£--3 bonds are somewhat weaker than their S values would indicate.

Up to this point, it has been tacitly assumed that the heat
of atomization can be understood by a consideration of the bonding eleo-
trons alone., The form of Eq. (4) embodies this assumption. Actually,
it has been known for some time, in fact ever since soon after quantum
mechanics began to be applied to valence theory, that the so-called non-
bonded repulaions are also of major importance for bond strongtha.e

‘ There are also nonbonded attractions which are often appreciadle, al-
though relatively of minor 1mportanoo.4

Henoe to have maximum energetic stability, it is necessary noi
only thet the attractions associated with the bonding eleotrons shall ©:
as strong as possible, but also that the nonbonded repulsions shall ts
as weak as possible. Each molecule must then make such choices (3 or =z
bonds) and ad justments (type and degree of hybridization) as to obtalrn
the best compromise between bonded (plus nonbonded) attractions and non-

x bonded repulsions,
It may accordingly be wise to acknowledge that the oirsume

stances afforded us by Nature are by no means as simple as we should

s . - . S o —— e e i, e A et . P e A e+ G  e—————
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like--or as we commonly assumeéssin the mattes of vnlenée theory; and to
face the need to take explicit account of the nondonded as well as the
.bondir\g interactions between eleotrons of atomes in a molecule, An ap-
proach to a solution of this probiem will be talien up in Section V, To
prepare the way, nonbonded repulsions are oconsidered briefly in Seotion

IV,

IV. OVERLAP INTEGRALS AND NONBONDED REPULSIONS

VB theory and MO theory agree®’% in indicating that for every
nonbonded pair of electrans of like type, one on each of two neighbor-
ing atoms, there is a repulsion energy roughly proportional to _8_2, the
square of the overlap integral of the orbitals ccocupied by the elec-
trons of such a pair., As in the ocase of bonded attractions, approxi-
mate proportionality to I 1s again reasanable, For the interaction of
electrons in oclosed shells, as in the ocase of two rcre gas atoms, MO

theory makes the following expression very plausible:
Ew=dz, A,18.2/(1-5802)-3% (6)
1 447148, 1 Iy e o

'-; where the first sum is taken over all interatomic pairs of electrons of
like type (that 1s, both members of a palr 6, or both %), and the A‘s
(_4_0., or g_n) are the same as for bonded pairs, (The K summation in Eq.
(5) corresponds to pairs oconsisting of one & and one % eleotron; here

tiieory predlots a nonbonded attraction, appreciable but not largs, end

independent of S-=whioh in this ocase 1s always zero.) Since usually th:
S's are small for nonbonded pairs, so that the factor 1/(1 - Siz) is e
inportant, and sinoce, also, experience indicates the need for a li‘t e

additional empiriocal flexibility, Eq. (6) may be modified ¢o

B = &z’_uisfr - .K . (6a)

diacaiiand Rund i o st
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One of the simplest exazmples is the rspuleive interaction of
two helium stoms at closs range. This correspends to four equal non-
.bondué. elactron pair repulcions, %ll between 1g electrons. Eq., (6)

then vecomes
E = 2AIS%/(1 - 8%) ,

This expression, with 8 computed theoretically and I = 24,58ev taken
from experiment, and with A takon as 0,65, is compared in Table III
(taken from Ref. 3), over a range of R values, with values of E evalu-
ated by direct theoretical procedures, It is seen that the fit 1s re-
’ markebly good. A similarly good fit over a kpown range of R values is

TABLE III
VAN DER WAALS REPULSION ENERGY BETVEEN TVW0O HELIUM ATOMS

Rla, |2 2.8 |3 3.5 |4 5
8 0.276 | 0.161 | 0,091 | 0,049 | 0,026 | 0,0076 4

2A821/(1 - 82)|2.61ev | 0.86 | 0.27 | 0.077 | 0,021 | 0.0018ev
with A = 0.66

Theoretical 2.38ev | 0,81 0.26 0.080 {0,025 | 0.0023ev

obtainable using Eq. (6a) with vA suitably chosen,
A further example of nonbonded repulsions, of a different
type, occurs in the interactions between 1s H atom electrons in mole-

cules of the type AHn or A Hn' Here no definitely reliable valuea of

actual repulsions hetween : atoms in such molecules seem to be avail-~
able, but it 1s of interest to see how big the overlap integrals are,
and from these to estimate the corresponding repulsion energies using
the same A value and formula (Eq. (6a)) which is found to fit for the
case of two helium atoms. Table IV (from Ref. 3) affords such a survey,
It indicates that overlaps of nonbonded H atoms are surprisingly large,

and suggests that the corresjonding repulsion energy can reach

— — el = - e e o -t e . e = - e STy
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oconsiderable totals in molecules ocontaining several hydrogen atoms.
Further studies of a similar nature indicate that nonbonded repulsion
.ensrgies between inner shells of one atom and the valence shell of

TABLE 1V
OVERLAP OF NON3ONDED HYDROGEN ATOMS
2 2
Compound . e s i%§ I/(1 - 8°)
B'HH’ ~ls,1s w th-éﬂ 0,86
HZO 1.51 0.38 007507
CH, or adjacent
T &toms in in C B 1.78 - 0.28 0.36
5? (ad javent
§d efoms) 1.84 0.26 0.32
CH 2.46 0.12 0,07
6 6

another8 may often be very important in the total balance of positive

and negative terms making up the net energy of atomization of any mole-
cule,

V. MAGIC FORMULA FOR ATOMIZATION ENERGIES
‘ Following out the line of thought presented in the preceding
taootiona, a "magic formula" has been devolopod4 for the purposes of re-
producing or prediocting and, espeoclally, of understanding, heats of
atomization, While this formula is still rather preliminary as to exaot
struoture and as to the values of the empirical coefficlents in it, it
is already good enough to reproduce observed. energies of atomization for
a somewhat varied selection of molecules (CH, Nz, 02, F2, CH4, 0286,
CoHgs CoH,, H2+’ He——He repulsion) with an average error of roughly +10%.

The magic formula is as follows:

3
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| D=2, -#Y, B -P+FE,
ell ell nonboncded
’ élaotron pulpem of elec-
pair tr-as rcs on (7)
bonds semo atom
in whioh X =48 T /(1 +#8 ) for the bonded attraction
| 1) 11 13/ i terms,
2
and Y, = 0.7 %‘Skl Tkl for the nonbonded repulsion }

tems,
with A, eand 4 equal to 1,16 for & bonds (A,) and to 1,63 for x bonds
(_l_\_n) to give D in ev (electron-volts)., The subsoripts i, 4; k, 1; m, n
refer to the atomioc orbitals of the elesctrons ooncerned, the twc member:
‘ of any pair being on neighboring atoms. The quantities 1“ or I‘kl refe:
to mean ionization energies, an average being taken for the two orbitals
1mrolvecl.9 The nonbonded attraction terms -l-(mn’ which involve 6'=x pairs,
are not funoctions of overlap integrals, but oan be computed theoreti-
oally.lo The promotion energy correction P, whioch is a sum of individ-
ual contrioutions from the various atoms, is often of considerable impor
tance. Such a correction necessarily occurs whenever an atom has to be
. promoted from its ground state to a state of higher energy (valence
(' state) before it can funotion as required in the particular c.ompom'ul.9
| For carbon in 1its tetravalent ocompounds, the promotion energy is always
arge. Finally, RE in Eqs. (7) denotes resonance energy of one kind or
anothor,g including ocorrections for the extra stability whioch (as Paul=-
ing pointed out) occurs for bonds between atoms differing in electrone-
gativity. However, Eq. (7) 48 not intended to apply to molecules con-
taining truly ionie bonds,
The meaning and use of Eq. (7) can best be made oclear in terme
I !, of an example, or this pm'posct,4 the CH radical is convenient, 1°
8,P hybridization is ignored, the electron configuration asccording to

VB theory would bes

Cimassstamiein ). Muddibdialidiiecs . nioee bl A0 %50 bRl .
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(18,)2(28,)% (2000 18, ) (Bpm,,)

‘ there being a single C—H bond formed by the carbon 2p¢ orbital with
the 1ls hydrogen orbital; the bond is indicated by a dot in the above
oonfiguration symbolism., Vhen hybridigation is admitted, the electron
oconfiguration becomes

2 2
(18)% (20t )2 (2n 018 ) (20, ) o (8)

where 2h and 2h! are two mutually orthogonal 2s-2p& hybrid orbitals of
the forms

zh=c23+(1-c2)i2p6‘; %'-(1-52)*23-6296‘. (9)

6

The hybrid 2h is a positive hybrid,” strmng in the direction of the hy-

drogen atom, while 2h' is a negative hybria,®

weak in that direction and
strong in the opnrosite direction. The special case a = #4 would corres-
pond to a tetrahedral orbital, but it 1s not necessary here to assume
any partiocular value of @ in advance, On the contrary, as will be seen,
) the magioc formula cen de used to determine what value of a will give
(~ the strongest bonding.

Corresnonding to Eq. (8), Eqs. (7) take the rorm"

i, |
4 For greater ease of writing, the subscripts i, J, and so on, of Eqs.

(7) are here replaced by expressions in parentheses,

D = X(2hy,1s;) - <2/2)Y(1°c’1°a) - (2/2)Y(2h'c.IBB) + iK(2pxC.ISH) - P

with X(2h ,1s ) = AT, S(2h,18.)/[1 + S(zn 28 )] ,

¢

2
Y(1s ,18.) = o.u;f(lsc,lsg)s (18,18 ) ,

1 2(2n!?
and  Y(2h',lsp) = o.'lAdIcns (2! ,1s.) .

A N A s, 4D
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The valu: of Agis 1,16; that of '_1;(120,128) is 15lev; while ch =
14.240v, In Eqs. (10), §(2_1'_1_C,lgg) and §(2Q'c,lg_x), as well as P, de-
‘ .pend‘ on the hybridization ccotficient as One oun thur use Eq. (30) to

compute D for any value of ¢, £iu if the values so computed are plotted

against the "degree of hybrilira+ion" a

D has a maximum value at a®

4

» it is fournd that the computed

El

)

= 04166, (This degree of hybridization can

be shown® to be equivalent to 15.64 promotion of the carbon atom fromn

4
ts normal 3222 oconfiguration toward _833.) It is reasonable to be-

11

lieve that the value thus obtained is close to ths true value, One

| notes that the degree of hybridization in 21_;0 8o determined 1s oonsider-

(V) WX

.ably less than for a tetrahedrel hybrid,
The following Table V, taken from Ref, 4, shows in a very in-

‘ structive way how hybridization affects the various terms, end so the {}
value of D, given by Eqs. (10). ~Iarticularly notable is the fact that 3{
H
1
TABIE V 3
STRUCTURE OF D FOR CH BY MAGIC FORMULA*% '
a=01in Eq. (9) | ¢ = (0.155)} in Eq. (9) :
’ S(ahc,laa) 0,509 0.686 |
S(ah'c,lsa) 0,663 0,308 '3
]
X(ahc’“n) S5.57ev 6.73ev
-Y(lsc,lsH) «0,62 ~0,62
(ol ! “Je =4le
Y(2n c,laH) 3.54 1.09
ix(apuc,laﬁ) 0.40 0.40
<P -0.49 -1,96
’ D caloulated 1l.32ev 3e47
! (Observed D = 3.47ev)
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hybridization has an important effect not merely in strengthening the
bonding between the hydrogen eiest»on and the ‘-"}'.C bonding orbitel, but
' also in outting down the otbh~.w’se rather large nontendsd repulsion be-
tween the hydrogen eleotrcn uaa the (2§'c)2 lone pair of carbon elec-
trons, Other notable .points aie the oonsideruble siyxe of the nonboncsd
renvlsisn between the H atom cicotron and the irnar shall (l_g_) ocarbon
eloctrons, and of the nonbondec at“raction between trhe H atom electiron
a1d the 2px carbon eleotron. All the effeocts noted here in the example
of CH recur with comparable 1xnpor1.:anoo for other molecules,
Another instruotive example is the nitrogen molecule (see Ref.
‘ 4 for details). Here for no hybridization (pure _3_223 trivalence) the
magioc formula gives D = -0,04ev, while for optimum hybridization, which
turns out to correspond to 21 percent prcmotion from 3223 toward 224
trivalence, the computed D is 8,32ev, near the observed value, Notable
also 1s the large magnitude of the nonbonded repulsions exerted by the
inner (1s) shells (-4.3ev altogether, almost half the net D). Still
more notable is the faot that, according to the magic formula, it is
essentially the % eleotrons alone which give the triple bond in N, its

]
ﬁ great strength. Their caloulated contribution to D is 14.97ev; the sum

of all other contributions, for a?

= 0,21, i8s -6.,65ev, The promotion
energy P 1is 8,84ev.

Because of the preliminary character of the magic formula, no
great reliance should be placed on the exact quantitative figures given
above, but there seems to be little doubt that the corresponding ma jor
qualitative conclusions, at least, are oorrect,

Even though the megic formula i1s still in a preliminary editimm,

a in need of further development and testing as to its quantitative possi-
bilities, it should probably already have & number of interesting appli-

cations to the rough estimation of bond energies, in addition to the

o eI ks O e b adidd.

-

O ki dadat oo Rl T 5. e
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insight it gives into the way in whi8h actual net bond energles are
built out of a number of positive and negative contributions. For ex-
. emple, it may be useful in estimating how bond energy depends on bond
engles, in estimating the energies of free radicals and of molecules in

e b M il S G

excited and ionized states (in aome cases Eqa. (7) then need additionsal

A i

tema"), and in estimating steris repulsions; and it should be capable

An ke

of extension to metals, Finally, it gives definite and probadly rather
{ reliable oonclusions as to degrees of dlaovalent hybridization, that 1is,
‘ of hybridization of the kind illustrated in CE and N, above, where ¢

2
bonds of inoreased strength are formed by hybridigzation wi thout inoreasc

i AR i it o b MR e

‘ ’ in the number of bonds. It is of interest that the degrees of isoval-
ent hybridization indicated by the muglic formula are in good aooord‘

with rough values indicated by several other lines of evidence for mols- ;
' oules such as HCI, H,0, NHy, N,, and O,.
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CAPTIONS FOR FIGURES

’ Figure 1, Forms of some 2-quantum atomic orbitals {schematioc:
sce text) drawn to show how like orbitals of two atoms overlap when the
atoms are pushed together (imagine the interatomic distance R to be

gradually decreased),

Figure 2., Overlap integral S based on Slater orbitals for 2-

quantum homopolar oonds. The symbols te, tr, di, refer respectively to

tetrahedral, trigonal, and digonal hybrid bonds (c = #, (1/3)*, and

’ (é)é in Eqs, (5)). The lower scale is for the interatomioc distance R
in K.U. for carbon-carbon bonds., Vith the use of the upper p scale, the
figure 18 applicable to any second-row homopolar bond; p means .2_13/230,
where 2 is the Slater 2 value (of. Ref, §). The circles superimposed on
some of the curves ars at Rcc = 1.543 (C~C bond, small full oirocle),

= 1,368 (C==C bond, open oirocles), and at R, = 1,208 (C==C bvong,

cC cC
double open circles)., For SCF orbitals, the 2pn curve would be raised

R

and ths 2p& curve lowered considerably, and the others changed to lesser
‘ extents (of., Table I).
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